High performance of targeted next generation sequencing on variance detection in clinical tumor specimens in comparison with current conventional methods
نویسندگان
چکیده
BACKGROUND Next generation sequencing (NGS) is being increasingly applied for assisting cancer molecular diagnosis. However, it is still needed to validate NGS accuracy on detection of DNA alternations based on a large number of clinical samples, especially for DNA rearrangements and copy number variations (CNVs). This study is to set up basic parameters of targeted NGS for clinical diagnosis and to understand advantage of targeted NGS in comparison with the conventional methods of molecular diagnosis. METHODS Genomic DNA from 1000 Genomes Project and DNA from cancer cell lines have been used to establish the basic parameters for targeted NGS. The following confirmation was conducted by clinical samples. The multiple variants tested by amplification-refractory mutation system (ARMS), fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) were evaluated by targeted NGS to determine the sensitivity. Furthermore, the multiple variants detected by targeted NGS were confirmed by current conventional methods to elucidate the specificity. RESULTS At sequencing depth of 500×, the maximal sensitivities on detecting single nucletic variances (SNVs) and small insertions/deletions (Indels) can reach 99% and 98.7% respectively, and in 20% of cancer cells, CNV detection can reach to the maximal level. The following confirmation of the sensitivity and specificity was conducted by a large cohort of clinical samples. For SNV and indel detection in clinical samples, targeted NGS can identify all hotspot mutations with 100% sensitivity and specificity. On ALK fusion detection, about 86% IHC-identified cases could be identified by targeted NGS and all ALK fusion detected by targeted NGS were confirmed by IHC. For HER2-amplification, 14 HER2-amplification cases identified by target NGS were all confirmed by FISH and about 93.3% of Her-2 IHC (3+) cases were identified by targeted NGS. Finally, the targeted NGS platform developed here has accurately detected EGFR hotspot mutations in 215 NSCLC patients. CONCLUSIONS DNA from cancer cell lines is better than standard DNA as a reference to establish basic parameters for targeted NGS. Comparison of the conventional methods using a large cohort of patient samples confirmed the high preformance of targeted NGS on detecting DNA alterations.
منابع مشابه
I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies
The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...
متن کاملTargeted High Depth Next Generation Sequencing of Tumor Specimens
We have developed a targeted next generation sequencing (NGS) methodology for sensitive DNA variant detection that is highly optimized for clinical specimens and enables the accurate detection of clinically actionable mutations from low input DNA quantities. This strategy provides reliable, uniform, and high depth (>1000x) sequencing across gene regions representing >500 known cancerassociated ...
متن کاملTargeted High Depth Next Generation Sequencing of Tumor Specimens
We have developed a targeted next generation sequencing (NGS) methodology for sensitive DNA variant detection that is highly optimized for clinical specimens and enables the accurate detection of clinically actionable mutations from low input DNA quantities. This strategy provides reliable, uniform, and high depth (>1000x) sequencing across gene regions representing >500 known cancerassociated ...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملMolecular Testing in Microbiology
There are significant challenges associated with qualitative and quantitative nucleic acid tests performed in diagnostic laboratories. The development of internationally available certified reference materials which can be traced to reference measurements will contribute to a better understanding of the performance characteristics of nucleic acid tests and enhance reliability and comparability ...
متن کامل